Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 54-63, 2024.
Article in Chinese | WPRIM | ID: wpr-1003766

ABSTRACT

ObjectiveTo investigate the effect and mechanism of salvianolic acid B combined with puerarin in protecting the SH-SY5Y cells from the damage by oxygen-glucose deprivation/reoxygenation (OGD/R) based on pyroptosis. MethodSH-SY5Y cells were used to establish the model of OGD/R, and cells were classified into the control, OGD/R, 10 μmol·L-1 salvianolic acid B, 100 μmol·L-1 puerarin, 10 μmol·L-1 salvianolic acid B + 100 μmol·L-1 puerarin, and 10 μmol·L-1 NOD-like receptor protein 3 (NLRP3) inhibitor MCC950 groups. Except the control group, other groups were rapidly reoxygenated for 12 h after 6 h OGD for modeling. The cell survival rate was determined by the methyl thiazolyl tetrazolium (MTT) assay. An optical microscope was used to observe the cell morphology. A spectrophotometer was used to determine the content of lactic dehydrogenase (LDH) in culture supernatant. Cell damage was measured by Hoechst/PI staining. The mRNA levels of NLRP3, cysteinyl aspartate specific proteinase-1 (Caspase-1), gasdermin D (GSDMD), apoptosis-associated speck-like protein (ASC), and interleukin-1β (IL-1β) were determined by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The protein activation of Caspase-1 and NLRP3 was detected by immunofluorescence. Western blot was employed to determine the protein levels of IL-1β, ASC, NLRP3, Caspase-1, and cleaved Caspase-1. ResultCompared with the control group, the OGD/R group showed decreased cell survival rate (P<0.01), damaged cell morphology, increased leakage rate of LDH (P<0.01), up-regulated mRNA levels of NLRP3, Caspase-1, GSDMD, ASC, and IL-1β (P<0.01), and up-regulated protein levels of IL-1β, ASC, NLRP3, Caspase-1, and cleaved Caspase-1 (P<0.01). Compared with the OGD/R group, salvianolic acid B, puerarin, and salvianolic acid B combined with puerarin improved cell survival rate (P<0.01), and the combined treatment group outperformed salvianolic acid B and puerarin used alone (P<0.01). Salvianolic acid B combined with puerarin and MCC950 both improved cell morphology, reduced the leakage of LDH (P<0.01), alleviated cell damage, and down-regulated the mRNA levels of NLRP3, Caspase-1, GSDMD, ASC, and IL-1β (P<0.05, P<0.01) and also the protein levels of IL-1β, ASC, NLRP3, Caspase-1, and cleaved Caspase-1 (P<0.05, P<0.01). ConclusionThe results indicated that salvianolic acid B combined with puerarin can alleviate the OGD/R-induced damage of SH-SY5Y cells by inhibiting pyroptosis.

2.
Chinese Journal of Neonatology ; (6): 38-43, 2023.
Article in Chinese | WPRIM | ID: wpr-990724

ABSTRACT

Objective:To study the role of a novel brain-derived peptide hypoxic-ischemic brain damage associated peptide (HIBDAP) in regulating pyroptosis of oxygen-glucose deprived (OGD) microglia.Methods:The sequence of HIBDAP was coupled with the sequence of cell-penetrating peptide transactivator of transcription (TAT) to form TAT-HIBDAP. Fluorescein isothiocyanate (FITC) labeled TAT-HIBDAP was added to microglia cells and observed under fluorescence microscope. Microglia cells were treated with different concentrations of TAT-HIBDAP (1, 5, 10, 20 μmol/L) and then OGD process. Cell pyroptosis was analyzed using lactate dehydrogenase (LDH) assay. The concentration of TAT-HIBDAP with the most prominent inhibiting effects was determined and selected for subsequent experiments. The pyroptosis morphology of the control group, the OGD group and the HIBDAP group (5 μmol/L TAT-HIBDAP+OGD) was observed using transmission electron microscope. The mRNA and protein expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes were examined using real-time quantitative PCR and Western Blot analysis.Results:Fluorescence microscope showed FITC-labeled TAT-HIBDAP could successfully enter microglia cells. Compared with the OGD group, low concentrations of TAT-HIBDAP (1, 5, 10 μmol/L) could significantly reduce microglia pyroptosis and the concentration of 5 μmol/L showed the most prominent effects. Compared with the control group, OGD group showed typical pyroptosis morphology and HIBDAP group showed significantly improved morphology. The mRNA and protein expression of NLRP3 inflammasomes in the OGD group were significantly higher than the control group and also the HIBDAP group.Conclusions:The novel brain-derived peptide HIBDAP may reduce the expression of NLRP3 inflammasomes and inhibit the pyroptosis of OGD microglia.

3.
Chinese Journal of Emergency Medicine ; (12): 912-918, 2023.
Article in Chinese | WPRIM | ID: wpr-989854

ABSTRACT

Objective:To explore the protective effect of zonisamide (ZNS) on oxygen-glucose deprivation (OGD) cell model of traumatic brain injury (TBI), and its underlying mechanism.Methods:Human neuroblastoma cells (SH-SY5Y) were cultured in vitro and divided into the control group, OGD group, and drug administration group (OGD+ZNS group) according to the random number table method. The OGD method was used to establish a TBI cell model. After modeling, the cell activity, the release of lactate dehydrogenase (LDH), and β-galactosidase staining were detected to evaluate cell function and senescence. Additionally, mitochondrial morphology and potential membrane changes were observed using Mito Tracker Red and JC-1 mitochondrial membrane potential staining. ATP concentration was measured, and protein was extracted from SH-SY5Y cells and then subjected to Western blot analysis to detect endoplasmic reticulum stress-related markers, including glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), protein disulfide isomerase (PDI), and β-actin.Results:The OGD group had a significantly lower cell survival rate compared to the control group ( P<0.01), while the OGD+ZNS group had a significant higher cell survival rate than the OGD group ( P<0.01). The LDH release rate was significantly higher in the OGD group than in the control group ( P<0.01), while the OGD+ZNS group had a significant lower LDH release rate compared to the OGD group ( P<0.01). Moreover, the cell staining results indicated that compared to the control and OGD+ZNS groups, the cells in the OGD group exhibited significant damage and senescence with darker staining while the mitochondrial staining results demonstrated a significant reduction in mitochondrial linear junctions and decreased mitochondrial activity in the OGD group compared to the control and OGD+ZNS groups. Compared to the control and OGD+ZNS groups, the OGD group exhibited a significant reduction in mitochondrial staining red fluorescence, a significant increase in green fluorescence, and a significant decrease in mitochondrial membrane potential. The OGD group demonstrated a significant decrease in ATP concentration compared to the control group ( P<0.01), whereas the OGD+ZNS group exhibited a significant higher ATP concentration compared to the OGD group ( P<0.01). Western blot analysis revealed significant upregulation of GRP78, CHOP, and PDI in the OGD group compared to the control group (all P<0.05), while in the OGD+ZNS group, the expression levels of these proteins were significantly downregulated compared to the OGD group (all P<0.05). Conclusions:Zonisamide can protect OGD TBI cell model by preserving mitochondrial activity and inhibiting endoplasmic reticulum stress.

4.
Journal of Southern Medical University ; (12): 1093-1101, 2023.
Article in Chinese | WPRIM | ID: wpr-987026

ABSTRACT

OBJECTIVE@#To investigate the effects of Naoluo Xintong Decoction (NLXTD) on pyroptosis and angiogenesis of brain microvascular endothelial cells (BMECs) and explore the possible mechanisms in rats with oxygen-glucose deprivation/ reperfusion (OGD/R).@*METHODS@#Rat BMECs with or without caspase-1 siRNA transfection were cultured in the presence of 10% medicated serum from NLXTD-treated rats (or blank serum) and exposed to OGD/R. CCK-8 assay, Transwell chamber assay, and tube formation assay were used to assess proliferation, migration, and tube-forming abilities of the cells. The activity of lactate dehydrogenase (LDH) in the culture supernatant was determined using a commercial assay kit, and the levels of inflammatory factors IL-1β and IL-18 were detected with ELISA. The cellular expressions of pro-caspase-1, caspase-1, NLRP3, Gasdermin D, and angiogenesis-related proteins VEGF and VEGFR2 were detected using Western blotting.@*RESULTS@#The BMECs showed obvious injuries after OGD/R exposure. Compared with the blank serum, the medicated serum significantly improved the cell viability, migration ability, and lumen-forming ability (P < 0.01) and lowered the levels of IL-1β and IL-18 and the LDH release (P < 0.01) of the cells with OGD/R exposure. Western blotting showed that in the BMECs exposed to OGD/R, the medicated serum strongly upregulated the expression of VEGF and VEGFR2 proteins (P < 0.01) and reduced the protein expressions of pro-caspase-1, caspase-1, NLRP3, and Gasdermin D (P < 0.01), and transfection of the cells with caspase-1 siRNA further promoted the expressions of VEGFR2 protein in the cells (P < 0.01).@*CONCLUSION@#NLXTD can improve the proliferation, migration, and tube- forming ability and promote angiogenesis of BMECs with OGD/R injury probably by inhibiting the caspase-1/Gasdermin D pathway in pyroptosis, alleviating cell injury, and upregulating the expressions of VEGF and VEGFR2.


Subject(s)
Animals , Rats , Endothelial Cells , Caspase 1 , Gasdermins , Interleukin-18 , NLR Family, Pyrin Domain-Containing 3 Protein , Vascular Endothelial Growth Factor A , Reperfusion Injury , Brain , Angiogenic Proteins , Glucose
5.
Journal of Central South University(Medical Sciences) ; (12): 641-647, 2023.
Article in English | WPRIM | ID: wpr-982333

ABSTRACT

OBJECTIVES@#Application of ultrashort wave (USW) to rats with cerebral ischemia and reperfusion injury could inhibit the decrease of expression of secretory pathway Ca2+-ATPase 1 (SPCA1), an important participant in Golgi stress, reduce the damage of Golgi apparatus and the apoptosis of neuronal cells, thereby alleviating cerebral ischemia-reperfusion injury. This study aims to investigate the effect of USW on oxygen-glucose deprivation/reperfusion (OGD/R) injury and the expression of SPCA1 at the cellular level.@*METHODS@#N2a cells were randomly divided into a control (Con) group, an OGD/R group, and an USW group. The cells in the Con group were cultured without exposure to OGD. The cells in the OGD/R group were treated with OGD/R. The cells in the USW group were treated with USW after OGD/R. Cell morphology was observed under the inverted phase-contrast optical microscope, cell activity was detected by cell counting kit-8 (CCK-8), apoptosis was detected by flow cytometry, and SPCA1 expression was detected by Western blotting.@*RESULTS@#Most of the cells in the Con group showed spindle shape with a clear outline and good adhesion. In the OGD/R group, cells were wrinkled, with blurred outline, poor adhesion, and lots of suspended dead cells appeared; compared with the OGD/R group, the cell morphology and adherence were improved, with clearer outlines and fewer dead cells in the USW group. Compared with the Con group, the OGD/R group showed decreased cell activity, increased apoptotic rate, and down-regulating SPCA1 expression with significant differences (all P<0.001); compared with the OGD/R group, the USW group showed increased cell activity, decreased apoptotic rate, and up-regulating SPCA1 expression with significant differences (P<0.01 or P<0.001).@*CONCLUSIONS@#USW alleviates the injury of cellular OGD/R, and its protective effect may be related to its up-regulation of SPCA1 expression.


Subject(s)
Animals , Rats , Apoptosis , Brain Ischemia , Glucose/metabolism , Oxygen/metabolism , Reperfusion Injury/metabolism , Transcriptional Activation , Up-Regulation , Calcium-Transporting ATPases/metabolism
6.
China Journal of Chinese Materia Medica ; (24): 3046-3054, 2023.
Article in Chinese | WPRIM | ID: wpr-981435

ABSTRACT

The aim of this study is to explore the mechanism of ligustilide, the main active constituent of essential oils of traditional Chinese medicine Angelicae Sinensis Radix, on alleviating oxygen-glucose deprivation/reperfusion(OGD/R) injury in PC12 cells from the perspective of ferroptosis. OGD/R was induced in vitro, and 12 h after ligustilide addition during reperfusion, cell viability was detected by cell counting kit-8(CCK-8) assay. DCFH-DA staining was used to detect the level of intracellular reactive oxygen species(ROS). Western blot was employed to detect the expression of ferroptosis-related proteins, glutathione peroxidase 4(GPX4), transferrin receptor 1(TFR1), and solute carrier family 7 member 11(SLC7A11), and ferritinophagy-related proteins, nuclear receptor coactivator 4(NCOA4), ferritin heavy chain 1(FTH1), and microtubule-associated protein 1 light chain 3(LC3). The fluorescence intensity of LC3 protein was analyzed by immunofluorescence staining. The content of glutathione(GSH), malondialdehyde(MDA), and Fe was detected by chemiluminescent immunoassay. The effect of ligustilide on ferroptosis was observed by overexpression of NCOA4 gene. The results showed that ligustilide increased the viability of PC12 cells damaged by OGD/R, inhibited the release of ROS, reduced the content of Fe and MDA and the expression of TFR1, NCOA4, and LC3, and improved the content of GSH and the expression of GPX4, SLC7A11, and FTH1 compared with OGD/R group. After overexpression of the key protein NCOA4 in ferritinophagy, the inhibitory effect of ligustilide on ferroptosis was partially reversed, indicating that ligustilide may alleviate OGD/R injury of PC12 cells by blocking ferritinophagy and then inhibiting ferroptosis. The mechanism by which ligustilide reduced OGD/R injury in PC12 cells is that it suppressed the ferroptosis involved in ferritinophagy.


Subject(s)
Animals , Rats , PC12 Cells , Ferroptosis/genetics , Reactive Oxygen Species , Transcription Factors , Glutathione
7.
China Pharmacy ; (12): 40-46, 2023.
Article in Chinese | WPRIM | ID: wpr-953715

ABSTRACT

OBJECTIVE To study the protective mechanism of Bawei chenxiang powder containing serum on H9c2 cells injured by oxygen-glucose deprivation (OGD). METHODS H9c2 cells were divided into blank group, model group and Bawei chenxiang powder low-dose, medium-dose and high-dose groups (the dose of drug containing serum 2.5, 8, 12 g/kg). H9c2 cells were cultured in vitro to establish OGD model. After intervention with drug-containing serum, survival rate of cell was detected. The cell morphology was observed; the levels of lactate dehydrogenase (LDH), creatine kinase (CK), superoxide dismutase (SOD), catalase (CAT), respiratory chain complexⅠ (ComplexⅠ), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were detected. The contents of reactive oxygen species (ROS), mitochondrial membrane potential and apoptosis were also detected. The expressions of oxidative stress-related proteins [Kelch ECH association protein 1 (Keap1), nuclear factor erythroid 2- related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NADH oxidoreductase coenzyme 10 (Ndufa10), thioredoxin (Trx)] and apoptosis-related proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax), Caspase-3 and cytochrome C (Cytc)] were detected. RESULTS Compared with blank group, the cell morphology of model group was damaged; the levels of LDH, CK and MDA were significantly increased (P<0.01), while the levels of CAT, ComplexⅠ, SOD and GSH-Px and mitochondrial membrane potential were significantly decreased (P<0.01). The content of intracellular ROS and apoptotic rate were significantly increased (P<0.01); the expressions of oxidative stress-related proteins (Keap1, Nrf2, HO-1, Ndufa10 and Trx) and pro- apoptosis proteins (Bax, Caspase-3 and Cytc) were significantly increased (P<0.05), while the expression of anti-apoptotic protein Bcl-2 was significantly decreased (P<0.05). After administration of Bawei chenxiang powder containing serum, the cell morphology improved, and most of the above indexes were significantly reversed (P<0.05 or P<0.01).CONCLUSIONS Bawei chenxiang powder containing serum E-mail:345783110@qq.com has a good protective effect on H9c2 cells damaged by OGD,the mechanism of which is related to the reduction of oxidative damage and inhibition of cell apoptosis.

8.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 245-250, 2022.
Article in Chinese | WPRIM | ID: wpr-920528

ABSTRACT

Objective@#Oxygen-glucose deprivation (OGD) is used to mimic ischemia in vitro to observe whether endoplasmic reticulum (ER) stress is involved in human dental pulp cells (hDPCs) after OGD and to better understand the regulatory mechanism of hDPCs in ischemia.@*Methods@# hDPCs were cultured in glucose-free DMEM and hypoxia (volume fraction 2% O2) to establish an hDPCs OGD model in vitro, which mimics hDPCs ischemia in vitro. hDPCs were divided into a control group (normal culture) and an experimental group (OGD 0 h, 2 h, 4 h and 8 h groups). After pretreatment with OGD for 0, 2, 4 and 8 h, hDPC viability was measured by methylthiazol tetrazolium (MTT) assay. qRT-PCR was used to detect the mRNA expression of ER stress markers [splicing x-box binding protein1 (sXBP1), activating transcription Factor 4 (ATF4) and C/EBP homologous protein (chop)]. Western blot was used to detect the protein expression of ER stress markers [phosphorylated RNA-activated protein kinase-like ER-resident kinase (p-perk) and phosphorylated eukaryotic initiation factor-2α (p-eIF2α)]. @*Results@#Compared with OGD 0 h group, cell viability of hDPCs decreased when exposed to OGD treatment for 2 h, 4 h and 8 h. Compared with the control group, mRNA expressions of ER stress makers (sXBP1, ATF4 and chop) and the protein expressions of ER stress protein markers (p-perk andp-eIF2α) increased in OGD treatment cells after 4 h were higher in OGD cells. The differences were statistically significant (P<0.05).@*Conclusion@#The results indicate that ER stress response is involved in hDPCs in OGD treatment.

9.
World Journal of Emergency Medicine ; (4): 46-53, 2022.
Article in English | WPRIM | ID: wpr-906679

ABSTRACT

@#BACKGROUND: Individuals who survive a cardiac arrest often sustain cognitive impairments due to ischemia-reperfusion injury. Mesenchymal stem cell (MSC) transplantation is used to reduce tissue damage, but exosomes are more stable and highly conserved than MSCs. This study was conducted to investigate the therapeutic effects of MSC-derived exosomes (MSC-Exo) on cerebral ischemia-reperfusion injury in an in vitro model of oxygen-glucose deprivation/reperfusion (OGD/R), and to explore the underlying mechanisms. METHODS: Primary hippocampal neurons obtained from 18-day Sprague-Dawley rat embryos were subjected to OGD/R treatment, with or without MSC-Exo treatment. Exosomal integration, cell viability, mitochondrial membrane potential, and generation of reactive oxygen species (ROS) were examined. Terminal deoxynucleotidyl transferase-mediated 2’-deoxyuridine 5’-triphosphate nick-end labeling (TUNEL) staining was performed to detect neuronal apoptosis. Moreover, mitochondrial function-associated gene expression, Nrf2 translocation, and expression of downstream antioxidant proteins were determined. RESULTS: MSC-Exo attenuated OGD/R-induced neuronal apoptosis and decreased ROS generation (P<0.05). The exosomes reduced OGD/R-induced Nrf2 translocation into the nucleus (2.14±0.65 vs. 5.48±1.09, P<0.01) and increased the intracellular expression of antioxidative proteins, including superoxide dismutase and glutathione peroxidase (17.18±0.97 vs. 14.40±0.62, and 20.65±2.23 vs. 16.44±2.05, respectively; P<0.05 for both). OGD/R significantly impaired the mitochondrial membrane potential and modulated the expression of mitochondrial function-associated genes, such as PINK, DJ1, LRRK2, Mfn-1, Mfn-2, and OPA1. The abovementioned changes were partially reversed by exosomal treatment of the hippocampal neurons. CONCLUSIONS: MSC-Exo treatment can alleviate OGD/R-induced oxidative stress and dysregulation of mitochondrial function-associated genes in hippocampal neurons. Therefore, MSC-Exo might be a potential therapeutic strategy to prevent OGD/R-induced neuronal injury.

10.
Chinese Critical Care Medicine ; (12): 151-155, 2022.
Article in Chinese | WPRIM | ID: wpr-931840

ABSTRACT

Objective:To investigate the function and mechanism of CXC chemokine receptor 7 (CXCR7) in neuronal cells of ischemic stroke.Methods:The expression of CXCR7 in human neuroblastoma SH-SY5Y cells was interfered by small interfering RNA (si-RNA) technique. Oxygen-glucose deprivation/reoxygenation (OGD/R) injury model was constructed in SH-SY5Y cells. CXCR7 protein expression and cell cycle were detected by flow cytometry (FCM). The protein expression of CXCR7 and Akt signaling pathway was detected by Western blotting.Results:After 6 hours of OGD/R, the expression of CXCR7 was significantly decreased compared with OGD/R 0 hour (CXCR7/GAPDH: 0.483±0.098 vs. 1.000±0.000 by Western blotting and 0.686±0.0524 vs. 1.000±0.000 by FCM, both P < 0.01), cell cycle arrest in G0/G1 phase (1.190±0.040 vs. 1.000±0.000, P < 0.01). After CXCR7 si-RNA interference with SH-SY5Y cells, OGD/R was constructed again for 6 hours. Compared with negative control group (si-NC group) under the same environment, the expression of CXCR7 and phosphorylated Akt (p-Akt) was significantly decreased (CXCR7/GAPDH: 0.471±0.051 vs. 1.000±0.000, p-Akt/GAPDH: 0.616±0.027 vs. 1.000±0.000, both P < 0.001) and cell cycle arrest in G0/G1 phase (1.105±0.033 vs. 1.000±0.000, P < 0.05). Conclusion:The CXCR7 could regulate the cycle of neuronal cells in ischemic stroke through Akt signaling pathway, which has a protective effect on neuronal cells.

11.
Chinese journal of integrative medicine ; (12): 410-418, 2022.
Article in English | WPRIM | ID: wpr-928942

ABSTRACT

OBJECTIVE@#To reveal the neuroprotective effect and the underlying mechanisms of a mixture of the main components of Panax notoginseng saponins (TSPN) on cerebral ischemia-reperfusion injury and oxygen-glucose deprivation/reoxygenation (OGD/R) of cultured cortical neurons.@*METHODS@#The neuroprotective effect of TSPN was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry and live/dead cell assays. The morphology of dendrites was detected by immunofluorescence. Middle cerebral artery occlusion (MCAO) was developed in rats as a model of cerebral ischemia-reperfusion. The neuroprotective effect of TSPN was evaluated by neurological scoring, tail suspension test, 2,3,5-triphenyltetrazolium chloride (TTC) and Nissl stainings. Western blot analysis, immunohistochemistry and immunofluorescence were used to measure the changes in the Akt/mammalian target of rapamycin (mTOR) signaling pathway.@*RESULTS@#MTT showed that TSPN (50, 25 and 12.5 µ g/mL) protected cortical neurons after OGD/R treatment (P<0.01 or P<0.05). Flow cytometry and live/dead cell assays indicated that 25 µ g/mL TSPN decreased neuronal apoptosis (P<0.05), and immunofluorescence showed that 25 µ g/mL TSPN restored the dendritic morphology of damaged neurons (P<0.05). Moreover, 12.5 µ g/mL TSPN downregulated the expression of Beclin-1, Cleaved-caspase 3 and LC3B-II/LC3B-I, and upregulated the levels of phosphorylated (p)-Akt and p-mTOR (P<0.01 or P<0.05). In the MCAO model, 50 µ g/mL TSPN improved defective neurological behavior and reduced infarct volume (P<0.05). Moreover, the expression of Beclin-1 and LC3B in cerebral ischemic penumbra was downregulated after 50 µ g/mL TSPN treatment, whereas the p-mTOR level was upregulated (P<0.05 or P<0.01).@*CONCLUSION@#TSPN promoted neuronal survival and protected dendrite integrity after OGD/R and had a potential therapeutic effect by alleviating neurological deficits and reversing neuronal loss. TSPN promoted p-mTOR and inhibited Beclin-1 to alleviate ischemic damage, which may be the mechanism that underlies the neuroprotective activity of TSPN.


Subject(s)
Animals , Rats , Beclin-1 , Brain Ischemia/metabolism , Glucose , Infarction, Middle Cerebral Artery/drug therapy , Mammals/metabolism , Neuroprotection , Neuroprotective Agents/therapeutic use , Oxygen , Panax notoginseng , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion Injury/metabolism , Saponins/therapeutic use , TOR Serine-Threonine Kinases/metabolism
12.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 968-975, 2022.
Article in Chinese | WPRIM | ID: wpr-956189

ABSTRACT

Objective:To clarify the neuroprotective effects of neural cell adhesion molecule (NCAM) derived peptide P2 on in vitro cultured neuron and ischemic stroke rat. Methods:Primary cortical neurons were extracted and cultured, and CCK-8 method was used to observe the protective effect of different concentrations of P2 on cortical neurons under oxygen-glucose deprivation (OGD) conditions.The levels of apoptosis-related proteins and extracellular signal regulated kinase 1/2 (Erk1/2) were observed by Western blot. Clean grade male SD rats were selected for animal experiments. The middle cerebral artery occlusion (MCAO) method was used to establish the rat model of cerebral ischemia/reperfusion injury. The rats with successful model were divided into sham operation group, MCAO group and MCAO+ P2 group according to the random number table, with 12 rats in each group. After operation, rats in MCAO+ P2 group were subcutaneously injected with 1 mg/kg P2 once a day until 14 days after operation, and rats in the other two groups were subcutaneously injected with 0.9% sodium chloride solution of the same volume.Beam-walking test was used to evaluate the motor function of rats.Immunofluorescence staining and Western blot were used to detect the in-situ apoptosis of neuronal cells and the expression of Erk1/2 in ischemic penumbra of rat brains, respectively. All statistical analyses were performed using SPSS 22.0.Repeated measurement ANOVA was used to evaluate the beam-walking experimental data, and one-way ANOVA were used to analyze other experimental data among multiple groups.Results:Compared with OGD group, 0.5, 1.0 and 2.0 μmol/L P2 improved the activity of neurons under OGD conditions, of which 1 μmol/L P2 had the best effect ((2.436±0.284), (1.551±0.410), P<0.05). Western blot showed that the protein levels of bax ((76.120±3.232)%, (88.965±5.208)%, P<0.05), cleaved caspase-3 ((76.736±4.306)%, (97.781±8.111)%, P<0.05) and cleaved caspase-9 ((88.833±6.581)%, (104.962±4.788)%, P<0.05) in 1 μmol/L P2 treated group were all lower than those in OGD group, while the protein levels of bcl-2 ((56.146±3.882)%, (43.170±6.945)%, P<0.05) and phosphorylated Erk1/2 ((73.583±8.557)%, (55. 219±4.615)%, P<0.05) in 1 μmol/L P2 treated group were both higher than those in OGD group. Compared with MCAO group, on the 14th day after P2 intervention, the slip ratio of hindlimb of the paralyzed hind limbs of rats was lower ((23.438±11.540)%, (41.733±13.631)%, P<0.05), the apoptosis rate of neurons around the focus was lower ((13.144±6.485)%, (26. 699±6. 402)%, P<0.05), and the level of phosphorylated Erk1/2 protein in the brain tissues around the infarct focus was higher ((74.062±7.458)%, (53.327±7.093)%, P<0.05). Conclusion:Low doses of neural cell adhesion molecule derived peptide P2 exert neuroprotective effects on OGD neurons and ischemic stroke rats. The underlying mechanism may be related to the activation of Erk.

13.
Chinese Critical Care Medicine ; (12): 842-847, 2022.
Article in Chinese | WPRIM | ID: wpr-956062

ABSTRACT

Objective:To investigate the effect of M1 microglia-derived exosomes (M1-exo) on neuronal injury after oxygen-glucose deprivation and restoration, and to explore its mechanism.Methods:The mouse microglia BV2 cells grown in logarithmic growth phase were added with 100 μg/L liposolysaccharide (LPS) and 20 μg/L interferon-γ (IFN-γ) to induce the polarization of microglia into M1 phenotype. M1 microglia were identified by Western blotting, quantitative real-time polymerase chain reaction (qPCR) and immunofluorescence. The supernatant of M1 microglia was collected, and exosomes were extracted by ExoQuick-TC TM kit. The morphology of exosomes were observed by transmission electron microscope and nanoparticle tracking analysis (NTA), and the expression of characteristic proteins CD9 and CD63 of exosomes were detected by Western blotting. The well-growing mouse neuroblastoma N2a cells were divided into six groups: the cells in group C were conventionally-cultured; and the cells in group O were subjected to oxygen-glucose deprivation for 3 hours followed by restoration of oxygen-glucose supply 24 hours to establish the model of oxygen-glucose deprivation and restoration injury; and the N2a cells in group E were co-cultured with M1-exo 24 hours after oxygen-glucose deprivation 3 hours; NC group, M group and I group constructed negative control, overexpression and knockdown of microRNA-20a-5p (miR-20a-5p) M1-exo, respectively. The succession of transfection was detected by qPCR and N2a cells in group NC, group M and group I were co-cultured with such transfected M1-exo for 24 hours after oxygen-glucose deprivation 3 hours. Cell viability were detected by cell counting kit-8 (CCK-8) assay, cell apoptosis were detected by flow cytometry, and the expression of miR-20a-5p were detected by qPCR. Results:Compared with M0 microglia, the fluorescence intensity and mRNA and protein expressions of CD32 and inducible nitric oxide synthase (iNOS), specific markers of M1 microglia, were increased [CD32 (fluorescence intensity): 36.919±1.541 vs. 3.533±0.351, CD32 mRNA (2 -ΔΔCt): 4.887±0.031 vs. 1.003±0.012, CD32/β-actin: 2.663±0.219 vs. 1.000±0.028; iNOS (fluorescence intensity): 29.513±1.197 vs. 7.933±0.378, iNOS mRNA (2 -ΔΔCt): 4.829±0.177 vs. 1.000±0.016, iNOS/β-actin: 1.991±0.035 vs. 1.000±0.045; all P < 0.01], indicating M1 microglia were successfully activated. Under electron microscopy, M1-exo had round or oval vesicular bodies with obvious membranous structures, with diameters ranging from 100 nm. Western blotting showed that the exosomes expressed specific CD63 and CD9 proteins. Compared with group C, the cell viability was decreased, the apoptosis rate and the expression of miR-20a-5p were significantly increased in group O [cell viability ( A value): 0.540±0.032 vs. 1.001±0.014, apoptosis rate: (19.857±0.910)% vs. (13.508±0.460)%, miR-20a-5p (2 -ΔΔCt): 5.508±0.291 vs. 1.033±0.101, all P < 0.01]. Compared with O group, cell viability was decreased, apoptosis rate and the expression of miR-20a-5p were increased in group E [cell viability ( A value): 0.412±0.029 vs. 0.540±0.032, apoptosis rate: (31.802±0.647)% vs. (19.857±0.910)%, miR-20a-5p (2 -ΔΔCt): 8.912±0.183 vs. 5.508±0.291, all P < 0.01], indicating that M1 microglia-derived exosomes further aggravated the damage of N2a cells after oxygen-glucose deprivation and restoration. Compared with group E, cell viability was decreased, apoptosis rate and the expression of miR-20a-5p were increased in group M [cell viability ( A value): 0.311±0.028 vs. 0.412±0.029, apoptosis rate: (36.343±0.761)% vs. (31.802±0.647)%, miR-20a-5p (2 -ΔΔCt): 32.348±0.348 vs. 8.912±0.183, all P < 0.01]; and the cell viability was increased, apoptosis rate and the expression of miR-20a-5p were decreased in group I [cell viability ( A value): 0.498±0.017 vs. 0.412±0.029, apoptosis rate: (26.437±0.793)% vs. (31.802±0.647)%, miR-20a-5p (2 -ΔΔCt): 6.875±0.219 vs. 8.912±0.183, all P < 0.01]. There was no significant difference in cell viability, apoptosis rate and the expression of miR-20a-5p between group E and group NC. Conclusion:M1 microglia-derived exosomes aggravate the injury of neurons after oxygen and glucose deprivation and reoxygenation, which may be related to miR-20a-5p carried by M1-exo.

14.
Journal of Southern Medical University ; (12): 584-590, 2022.
Article in Chinese | WPRIM | ID: wpr-936351

ABSTRACT

OBJECTIVE@#To explore the effect of inhibiting polyribonucleotide nucleotidyl-transferase 1 (PNPT1) on oxygen-glucose deprivation (OGD)-induced apoptosis of mouse atrial myocytes.@*METHODS@#Cultured mouse atrial myocytes (HL-1 cells) with or without OGD were transfected with PNPT1-siRNA or a negative control siRNA (NC-siRNA group), and the cell survival rate was detected using CCK-8 assay. The expression levels of ACTB and TUBA mRNA were detected with qPCR, and the protein expression of PNPT1 was detected with Western blotting. The apoptosis rate of the treated cells was determined with flow cytometry, the mitochondrial membrane potential was detected using JC-1 kit, and the mitochondrial morphology was observed using transmission electron microscope.@*RESULTS@#With the extension of OGD time, the protein expression levels of PNPT1 increased progressively in the cytoplasm of HL-1 cells (P < 0.05). Transfection with PNPT1-siRNA significantly reduced PNPT1 expression in HL-1 cells (P < 0.05). Exposure to OGD significantly enhanced degradation of ACTB and TUBA mRNA (P < 0.05) and markedly increased the apoptosis rate of HL-1 cells (P < 0.05), and these changes were significantly inhibited by transfection with PNPT1-siRNA (P < 0.05), which obviously increased mitochondrial membrane potential and improved mitochondrial morphology of HL-1 cells exposed to OGD.@*CONCLUSION@#Inhibition of PNPT1 improves mitochondrial damage and reduces degradation of apoptotic-associated mRNAs to alleviate OGD-induced apoptosis of mouse atrial myocyte.


Subject(s)
Animals , Mice , Apoptosis , Cell Survival , Glucose/pharmacology , Myocytes, Cardiac , Oxygen/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism
15.
Acta Pharmaceutica Sinica ; (12): 409-418, 2022.
Article in Chinese | WPRIM | ID: wpr-922916

ABSTRACT

We investigated the ability of Dracocephalum moldavica (EPDM) flavonoids to protect human brain microvascular endothelial cells (HBMECs) from necroptosis induced by ischemia-reperfusion injury. To mimic the process of cerebral ischemia-reperfusion injury, a necroptosis model was established by treatment with the pan-cysteine aspartic acid protease (caspase) inhibitor Z-VAD-FMK combined with oxygen-glucose deprivation/re-oxygenation (OGD/R) injury using HBMECs. Cell proliferation and cytotoxicity (cell counting kit-8, CCK-8) was used to measure cell viability. A Hoechst33342/PI fluorescent double-staining method was exploited to determine the rate of cell necroptosis. A commercial kit was used to detect lactate dehydrogenase in the cell culture supernate. DCFH-DA probes, calcein AM and JC-1 probes were used to measure changes in ROS production, mitochondrial membrane permeability transformation pore (MPTP) opening and mitochondrial membrane potential (MMP), respectively. Enzyme-linked immunosorbent assay (ELISA) kits were chosen to detect the release of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Western blotting was used to detect necroptosis-related proteins. The results show that relative to control group, Z-VAD-FMK combined with OGD/R injury reduced cell viability, increased the necroptosis rate and the levels of LDH and ROS in HBMECs. The MPTP of the model group cells opened and the MMP reduced. TNF-α, IL-1β, and IL-6 levels were significantly elevated. Furthermore, the expression of receptor-interacting protein kinase 3 (RIP3) and mitochondrial phosphoglycerate mutase 5 (PGAM5) was significantly increased, accompanied by an increase of phosphorylated mixed-lineage kinase domain-like protein (p-MLKL)/MLKL. EPDM partially reversed the changes of the above-mentioned factors in HBMECs induced by Z-VAD-FMK plus OGD/R injury. These results indicate that EPDM may protect HBMECs from cerebral ischemia-reperfusion injury by inhibiting the RIP3/MLKL/PGAM5 pathway and MPTP opening to maintain mitochondrial function, thereby providing a scientific basis for the use of EPDM in the treatment of cerebral ischemia-related diseases.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 24-33, 2022.
Article in Chinese | WPRIM | ID: wpr-940172

ABSTRACT

ObjectiveTo explore the protective effect of Salviae Miltiorrhizae Radix et Rhizoma and Puerariae Lobatae Radix (SP) extract on oxygen-glucose deprivation/reoxygenation (OGD/R)-injured SH-SY5Y cells based on oxidative stress and apoptosis. MethodThe extracts of the two medicinal materials mixed in different ratios were prepared. Human neuroblastoma SH-SY5Y cells were cultured in vitro and the injury was induced by OGD/R. Cell counting kit-8 (CCK-8) assay was used to screen the optimal ratio of the two medicinals and then the extract was used for further experiment. SH-SY5Y cells were classified into normal control group, OGD/R group, and low-, medium-, and high-dose SP (2∶1) extract groups (10, 30, 100 mg·L-1, respectively). Cells in the groups, except the normal control group, were rapidly reoxygenated for 12 h after 4 h OGD for modeling. Then cell viability was detected by CCK-8 and cell morphology was observed under the microscope. The release rate of lactate dehydrogenase (LDH), superoxide dismutase (SOD) activity, and content of glutathione (GSH) and malondialdehyde (MDA) were determined by spectrophotometry. The level of reactive oxygen species (ROS) was detected with 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) and mitochondrial membrane potential with JC-1 assay. The nuclear morphology was observed based on Hoechst 33342 staining, and apoptosis was examined by flow cytometry combined with Annexin V-FITC/PI staining. ResultThe viability of the cells was highest in the presence of the extract of the two medicinals mixed at the ratio of 2∶1. Compared with normal control group, OGD/R group showed damaged cell morphology, high release rate of LDH and levels of ROS and MDA (P<0.01), low SOD activity and GSH level (P<0.01), low mitochondrial membrane potential, and high apoptosis rate (P<0.01). Compared with OGD/R group, SP extract improved cell viability and cell morphology and reduce cell LDH release rate in a concentration-dependent manner (P<0.01). In addition, SP extract at 30, 100 mg·L-1 reduced the level of intracellular ROS and increased SOD activity and GSH level (P<0.05, P<0.01), and SP extract at 100 mg·L-1 decreased the content of MDA (P <0.05). Moreover, SP extract increased mitochondrial membrane potential, and SP extract at 30, 100 mg·L-1 lowered the apoptosis rate (P<0.01). ConclusionThe extract of Salvia miltiorrhiza Bunge and Radix Puerariae mixed at 2∶1 shows better protective effect on OGD/R-injured SH-SY5Y cells. The mechanism is the likelihood that it alleviates oxidative damage of cells and inhibits cell apoptosis.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 24-33, 2022.
Article in Chinese | WPRIM | ID: wpr-940140

ABSTRACT

ObjectiveTo explore the protective effect of Salviae Miltiorrhizae Radix et Rhizoma and Puerariae Lobatae Radix (SP) extract on oxygen-glucose deprivation/reoxygenation (OGD/R)-injured SH-SY5Y cells based on oxidative stress and apoptosis. MethodThe extracts of the two medicinal materials mixed in different ratios were prepared. Human neuroblastoma SH-SY5Y cells were cultured in vitro and the injury was induced by OGD/R. Cell counting kit-8 (CCK-8) assay was used to screen the optimal ratio of the two medicinals and then the extract was used for further experiment. SH-SY5Y cells were classified into normal control group, OGD/R group, and low-, medium-, and high-dose SP (2∶1) extract groups (10, 30, 100 mg·L-1, respectively). Cells in the groups, except the normal control group, were rapidly reoxygenated for 12 h after 4 h OGD for modeling. Then cell viability was detected by CCK-8 and cell morphology was observed under the microscope. The release rate of lactate dehydrogenase (LDH), superoxide dismutase (SOD) activity, and content of glutathione (GSH) and malondialdehyde (MDA) were determined by spectrophotometry. The level of reactive oxygen species (ROS) was detected with 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) and mitochondrial membrane potential with JC-1 assay. The nuclear morphology was observed based on Hoechst 33342 staining, and apoptosis was examined by flow cytometry combined with Annexin V-FITC/PI staining. ResultThe viability of the cells was highest in the presence of the extract of the two medicinals mixed at the ratio of 2∶1. Compared with normal control group, OGD/R group showed damaged cell morphology, high release rate of LDH and levels of ROS and MDA (P<0.01), low SOD activity and GSH level (P<0.01), low mitochondrial membrane potential, and high apoptosis rate (P<0.01). Compared with OGD/R group, SP extract improved cell viability and cell morphology and reduce cell LDH release rate in a concentration-dependent manner (P<0.01). In addition, SP extract at 30, 100 mg·L-1 reduced the level of intracellular ROS and increased SOD activity and GSH level (P<0.05, P<0.01), and SP extract at 100 mg·L-1 decreased the content of MDA (P <0.05). Moreover, SP extract increased mitochondrial membrane potential, and SP extract at 30, 100 mg·L-1 lowered the apoptosis rate (P<0.01). ConclusionThe extract of Salvia miltiorrhiza Bunge and Radix Puerariae mixed at 2∶1 shows better protective effect on OGD/R-injured SH-SY5Y cells. The mechanism is the likelihood that it alleviates oxidative damage of cells and inhibits cell apoptosis.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 9-18, 2021.
Article in Chinese | WPRIM | ID: wpr-906418

ABSTRACT

Objective:To investigate the effect of Buyang Huanwutang (BHT) on proliferation and differentiation in neural stem cells (NSCs) after oxygen-glucose deprivation/reoxygenation (OGD/R) injury. Method:NSCs isolated from the hippocampus of SD rats were cultured and randomly divided into a normoxia group, a model group, a BHT group, a rapamycin (Rapa) group, and a combination group [autophagy inhibitor 3-methyladenine (3-MA) combined with BHT]. The 20% blank serum was used in the normoxia group, and 20% BHT-medicated serum in the BHT group. The doses of Rapa and 3-MA were 1 μmol·L<sup>-1</sup> and 5 mmol·L<sup>-1</sup>, respectively. The cells were subjected to OGD/R except those in the normoxia group. The cell morphology was observed under a light microscope. NSCs were confirmed by immunofluorescence detection of nestin expression. The viability and proliferation of NSCs were assessed by cell counting kit-8 (CCK-8) assay and 5-ethynyl-2-deoxyuridine (EdU) labeling, respectively. Furthermore, Ad-mCherry-GFP-LC3B fluorescence assay was performed to investigate autophagy. The effect of BHT on autophagy-related protein expression was detected by western blot assay. Brain derived neurotrophic factor (BDNF), <italic>β</italic>-tubulin Ⅲ, and glial fibrillary acidic protein (GFAP) were evaluated by immunofluorescence assay. Result:OGD/R significantly reduced the cell viability of rat NSCs as compared with the normoxia group. Compared with the model group, the BHT group exhibited significantly improved viability of rat NSCs (<italic>P</italic><0.01). BHT induced the production of autophagosomes in NSCs after OGD. The BHT group showed increased expression of microtuble-associated protein 1 light chain 3Ⅱ (LC3Ⅱ) and Beclin-1 (<italic>P</italic><0.05,<italic>P</italic><0.01) and slightly changed p62 compared with the normoxia group, and significantly up-regulated LC3Ⅱ and Beclin-1 (<italic>P</italic><0.05,<italic>P</italic><0.01) and down-regulated expression of p62 (<italic>P</italic><0.01) compared with the model group. The Rapa group had similar effect as the BHT group (<italic>P</italic><0.05,<italic>P</italic><0.01), while the combination group inhibited the activity of autophagy (<italic>P</italic><0.01). As indicated by the results of ad-mCherry-GFP-LC3B, compared with the normoxia group, the model group showed increased fluorescence intensity (<italic>P</italic><0.01), and the BHT and Rapa groups could further increased the fluorescence intensity of autophagy (<italic>P</italic><0.01), while the combination group inhibited autophagy activity (<italic>P</italic><0.01). Immunofluorescence results revealed that compared with the normoxia group, the model group displayed significantly reduced positive cells of EdU, <italic>β</italic>-tubulin Ⅲ, GFAP, and BDNF (<italic>P</italic><0.01), and the BHT and Rapa groups exerted similar protective and promoting effects (<italic>P</italic><0.05,<italic>P</italic><0.01), while the combination group partially blocked the neuroprotection and differentiation ability of BHT (<italic>P</italic><0.05). Conclusion:BHT pretreatment can effectively protect rat NSCs against OGD-induced injury and promoted proliferation and differentiation by up-regulating autophagy.

19.
World Journal of Emergency Medicine ; (4): 61-67, 2021.
Article in English | WPRIM | ID: wpr-862227

ABSTRACT

@#BACKGROUND: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stem cells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, the mechanisms by which BMSC-derived sEVs (BMSC-sEVs) protect neurons against cerebral ischemia/reperfusion (I/R) injury remain unclear. In this study, we explored the neuroprotective effects of BMSC-sEVs in the primary culture of rat cortical neurons exposed to oxygen-glucose deprivation and reperfusion (OGD/R) injury. METHODS: The primary cortical neuron OGD/R model was established to simulate the process of cerebral I/R in vitro. Based on this model, we examined whether the mechanism through which BMSC-sEVs could rescue OGD/R-induced neuronal injury. RESULTS: BMSC-sEVs (20 μg/mL, 40 μg/mL) significantly decreased the reactive oxygen species (ROS) productions, and increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Additionally, BMSC-sEVs prevented OGD/R-induced neuronal apoptosis in vivo, as indicated by increased cell viability, reduced lactate dehydrogenase (LDH) leakage, decreased terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining-positive cells, down-regulated cleaved caspase-3, and up-regulated Bcl-2/Bax ratio. Furthermore, Western blot and flow cytometry analysis indicated that BMSC-sEV treatment decreased the expression of phosphorylated calcium/calmodulin-dependent kinase II (p-CaMK II)/CaMK II, suppressed the increase of intracellular calcium concentration ([Ca2+]i) caused by OGD/R in neurons. CONCLUSIONS: These results demonstrate that BMSC-sEVs have significant neuroprotective effects against OGD/R-induced cell injury by suppressing oxidative stress and apoptosis, and Ca2+/CaMK II signaling pathways may be involved in this process.

20.
Journal of Pharmaceutical Practice ; (6): 317-321, 2021.
Article in Chinese | WPRIM | ID: wpr-882069

ABSTRACT

Objective To study the protective effect of active peptide GRGDS on rat nerve cells (PC12 cells) in oxygen glucose deprivation (OGD) injury model and explore its mechanism of action. Methods PC12 cells were divided into control group, ODG group, and active peptide GRGDS treatment group. The injury model was established by simulating in vitro cerebral ischemia by oxygen and sugar deprivation. MTT and flow cytometry were used to detect apoptosis after oxygen-glucose deprivation. ELISA method was used to detect the changes of inflammatory factors TNF-α and IL-1β in PC12 cell supernatant after oxygen-glucose deprivation. Western blot was used to detect the expression of apoptosis pathway-related proteins. Results The results of MTT and flow cytometry showed that the active peptide GRGDS significantly reduced the apoptosis of PC12 cells after oxygen glucose deprivation (P<0.05). ELISA test results showed that the active peptide GRGDS significantly reduced the content of TNF-α and IL-1β in the supernatant of PC12 cells after oxygen-glucose deprivation. (P<0.05). Western blot results showed that the active peptide GRGDS significantly reduced the expression levels of p-JNK, Bax, and cleaved caspase 3 in PC12 cells mediated by oxygen-glucose deprivation injury (P <0.01). Conclusion The active peptide GRGDS has protective effect on PC12 cells damaged by oxygen and glucose deprivation. The mechanism may be related to anti-apoptotic and anti-inflammatory effects.

SELECTION OF CITATIONS
SEARCH DETAIL